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Abstract: Clinical management of burn injuries depends upon an accurate 

assessment of the depth of the wound. Current diagnostic methods rely 

primarily on subjective visual inspection, which can produce variable 

results. In this study, spectroscopic optical coherence tomography was used 

to objectively evaluate burn injuries in vivo in a mouse model. Significant 

spectral differences were observed and correlated with the depth of the 

injury as determined by histopathology. The relevance of these results to 

clinical burn management in human tissues is discussed. 
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1. Introduction 

Although outcomes for burn patients have improved dramatically over the past few decades, 

burn wounds still cause significant morbidity and mortality [1] and are estimated to cost $7.5 

billion per year in the United States [2]. Outcomes are dependent upon an accurate 

assessment of burn depth, which predicts if the wound will heal within a few weeks after 

injury; a false-positive assessment leads to unnecessary surgery while a false-negative one 

leads to longer hospital stays, contracture, and hypertrophic scar formation. A number of 

techniques have been proposed for noninvasive assessment of burn injuries (including laser 

Doppler imaging [3], photo-acoustic imaging [4], near-infrared spectroscopy [5], polarization 

sensitive optical coherence tomography (PS-OCT) [6–9], spatial frequency domain imaging 

[10, 11], and spectroscopic optical coherence tomography (SOCT) [12, 13]), but none have 

been widely adopted. Clinical evaluation methods still rely primarily on subjective visual 

inspection, which provides limited accuracy, especially for assessing intermediate, partial-

thickness burns [14]. Therefore, new technologies capable of objectively characterizing burn 

wounds are needed to improve patient outcomes and reduce the economic burden of these 

injuries. 

In this paper, burn wounds of varying severity were studied in vivo in a mouse burn model 

with SOCT. Spectroscopic data were extracted through the use of a short time Fourier 

transform (STFT) or the recently-developed dual window (DW) method [15]. A depth-

dependent analysis method is also presented and used to extract parameters correlated with 

the severity of the injury as determined by histopathology. The results suggest that this 

approach could be used to objectively assess burn wounds. 

2. Experimental methods and design 

All data were acquired in vivo from female C57BL/6 mice (Jackson Laboratories, Bar Harbor, 

ME) at 10-12 weeks of age and weighing between 18 and 23 grams. After anesthetization, the 

mice were shaved and placed in a customized mold with an 8-mm-diameter opening. The 
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opening was exposed to 60°C water for 5, 10, 18 or 25 seconds producing injuries ranging 

from superficial burns to full thickness burns [16]. This procedure was approved by the 

Institutional Animal Care & Use Committee at Duke University. 

Following burn induction, each mouse (N = 4 total; 1 per exposure time) was imaged with 

a commercial, spectral-domain OCT system (Spark DRC, Wasatch Photonics Inc., Durham, 

NC) with a center wavelength of 850 nm, bandwidth of 155 nm, imaging depth range of 2 

mm, and axial and lateral resolutions in air of 2.1 μm and 8 μm, respectively. Cross-sectional 

OCT images were acquired from both burned and adjacent healthy sites (32 co-located 

images per site; 1 burned and 1 healthy site per mouse) for comparison and the tissue was 

marked with India ink for registration with histopathology. Histopathology showed 

superficial injury with epidermal necrosis for the 5 second burn, dermal injury with collagen 

damage to a depth of about 200 μm for the 10 second burn, deeper injury with necrotic hair 

follicles and damage to a depth of about 450 μm for the 18 second burn, and injury evident 

down to the subcutaneous adipose tissue for the 25 second burn. For the remainder of this 

article, these injuries will be referred to as epidermal (EB), superficial partial thickness 

(SPTB), deep partial thickness (DPTB), and full thickness (FTB) burns, respectively. 

Depth-resolved spectroscopic data were obtained by processing the raw interferometric 

signal with custom software written in MATLAB (R2013a, Mathworks, Natick, MA). The 

raw data were processed with an STFT or the DW method and spectra that fell below a 

minimum intensity threshold were discarded. A spectral window of 75 cm
1

 was used for the 

STFT, resulting in a spectral resolution of approximately 5 nm and a degraded axial 

resolution of 60 μm. The DW method calculates the product of two spectral windows of 

different widths to achieve high resolution in both the spatial (time) and frequency domains. 

In our study, a wide window of 1400 cm
1

 was applied resulting in an axial resolution of 3 

μm in air while a narrow window of 75 cm
1

 provided a spectral resolution of 5 nm. These 

parameters were chosen to match those used in a previous study [12]. 

The depth-resolved spectroscopic data were used to classify the tissue as burned or 

healthy using parameters derived from either a power-law or logistic regression classification 

model. In the power-law model, the spectrum associated with each pixel was fit with the 

expression bA  where λ is the wavelength and A, b are fitted parameters. The logistic 

regression classification model utilized principal component analysis to reduce the 

dimensionality of the data followed by logistic regression to form a binary predictor for each 

pixel as described previously [12]. 

3. Results 

Representative data acquired from the SPTB are presented in Fig. 1. This figure shows both 

conventional, intensity-based OCT images obtained in vivo (a-b) as well as the corresponding 

histopathology (c-d). The conventional OCT images appear similar, making classification 

based on intensity alone difficult. The histopathology, however, shows clear differences 

between the burned [Fig. 1(d)] and healthy tissue [Fig. 1(c)] including darkly-stained cell 

nuclei in the burned sample that are indicative of necrosis associated with inflammation and 

an altered distribution of adipose cells. 

Figure 2 shows the average spectra acquired from the DPTB, SPTB, and adjacent healthy 

tissues after processing with an STFT. The average power-law exponent across the DPTB 

decreased from 6.7 2.9b    (mean ± standard deviation) at the healthy site to 2.0 2.5b    

(burned site) while the power-law exponent for the SPTB decreased from 6.0 2.8b    

(healthy) to 4.4 3.1b    (burned). Also notice that the burned tissue spectrum shows several 

oscillatory features that appear similar to the absorption spectrum of adipose tissue [17]. The 

histopathology in Fig. 1(d) supports this observation showing that the fat cells are no longer 

confined beneath the dermis. Receiver operating characteristic (ROC) curves generated using 

the power-law or logistic regression classification model trained on data from the SPTB 
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sample are displayed in Fig. 2(c). The overall accuracies of 65% (power-law) and 76% 

(logistic regression) suggest that this approach, although previously shown to be capable of 

providing an accuracy of 90% in classifying severe, full-thickness burns [12], may not be 

sufficient for elucidating the more subtle differences in less severe, partial-thickness burns. 

 

Fig. 1. OCT images of (a) healthy and (b) burned (SPTB) mouse tissue in vivo. Corresponding 

histopathology is shown in (c) and (d). (c) Healthy tissue layers include the E-epidermis, D-

dermis, A-adipose, and M-muscle. (d) Burned tissue shows darkly-stained cell nuclei 
indicative of inflammation in the superficial layer. (Scale bars 250 μm.) 

 

Fig. 2. Average spectra acquired from the DPTB (a) and SPTB (b) samples and adjacent 

healthy tissue. Spectra were downsampled for display purposes and error bars were omitted 
because the 95% confidence intervals are smaller than the markers. (c) ROC curves generated 

with the power-law (PL) and logistic regression (LR) classification models. The area under the 

curve (AUC) and accuracy (calculated at the location of the black dot) of each method are also 
listed. 

Similar analyses were performed using the DW method to extract spectroscopic data. 

However, as in a previous study [12], the STFT produced superior classification accuracy in 

burn discrimination. It should be noted that although the DW method is capable of measuring 

bulk tissue properties, it was developed for high resolution imaging of single cellular particles 

[18, 19] and may not be ideally-suited to measure macroscopic changes associated with burn 

wounds. The remainder of this article will focus on spectroscopic data extracted with STFTs. 

In the above analysis, spectroscopic data from all depths were used to train the power-law 

and logistic regression classification models. In order to improve diagnostic accuracy and 

provide an estimate of burn depth, we developed a depth-dependent analysis method. A 

customized Canny edge detector [20] was used to determine the location of the tissue surface 

and nine, 25-μm-thick layers were segmented from the surface down to a depth of 225 μm. 

The thickness of the segmented layers was chosen to satisfy the Nyquist-Shannon sampling 

theorem given the spatial resolution of 60 μm provided by the STFT. Finally, separate power-

law and logistic regression classification models were trained for each burn severity and each 

layer below the tissue surface. These classification models were not used to predict the 

severity or depth of injury, but rather to classify each pixel within an image as either healthy 

or burned. 
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Figure 3(a) shows the percentage of pixels in each layer classified as burned by the depth-

dependent logistic regression models. As expected, the percentage increases with burn 

severity and decreases with depth (because the most severe damage is generally observed in 

the superficial layers). Figure 3(b) presents the ROC curve associated with classification of 

the pixels in the surface layers (0-25 μm depth) of the SPTB and adjacent healthy tissue. This 

model achieved an overall accuracy of 90%. For comparison, the original logistic regression 

model, which used spectroscopic data from all depths for classification, achieved an accuracy 

of 76% [Fig. 2(c)]. We observed a similar improvement with each depth-dependent 

classification model at the tissue surface (0-25 μm depth) as the classification accuracies 

increased from 91% to 98%, 86% to 90%, and 52% to 59% for the FTB, DPTB, and EB, 

respectively. It should be noted that it is not possible to generate ROC curves associated with 

deeper layers because the health of the tissue is not known on a pixel-by-pixel basis at these 

depths. We therefore chose to report classification accuracy at the surface of the tissue. The 

spectroscopic differences between burned and healthy tissue can also be visualized by color-

coding the OCT images. Figure 4 displays false-color images of the SPTB and adjacent 

healthy tissue generated using logistic regression with [Fig. 4(b)] and without [Fig. 4(a)] the 

depth-dependent analysis method. The figure shows that the colors derived from the depth-

dependent analysis method are more uniform than those derived from the original 

classification model. 

 

Fig. 3. (a) Percentage of pixels classified as burned using depth-dependent logistic regression. 

(b) ROC curve associated with this model applied to the data from the surface layers (0-25 μm) 
of the SPTB [for comparison to Fig. 2(c)] and adjacent healthy tissue. The area under the curve 

(AUC) and accuracy (calculated at the location of the black dot) are also listed. 

 

Fig. 4. Color coded OCT images based on (a) original logistic regression (LR) model and (b) 

depth-dependent LR model. (Scale bars 250μm.) 

The depth-dependent analysis method was also used to determine the fitted power-law 

exponent as a function of depth for each sample. A normalized exponent relb  was calculated 

as      / ,rel burned healthyb z b z b z  where  burnedb z  is the average power-law exponent 

associated with the burned tissue at depth z  and  healthyb z  is the average exponent of the 
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adjacent healthy tissue at the same depth. As shown in Fig. 5(a), the more severe injuries 

typically yielded lower normalized values for the exponents. The figure also shows that 
relb  

generally increased with depth in the tissue, indicating that the severity of the burn decreased 

with depth. The only exception to this trend is the data associated with the EB, where 
relb  

remained relatively stable across all depths, suggesting that epidermal burns do not 

significantly alter tissue scattering or absorption in the near infrared spectral range. 

Although our system has a maximum imaging range of 2 mm, the practical penetration 

depth in murine skin is limited by scattering to a few hundred microns and we were therefore 

unable to image through the entire DPTB and FTB. Despite the limited penetration depth, we 

did observe correlations between the injury depths, which ranged between 0 and 

approximately 500 μm, and the power-law exponents extracted from the superficial layers of 

the tissue. For the range of imaging depths examined here (0-225 μm), the correlations were 

all statistically significant and ranged from 0.93 at the surface layers (0-25 μm depth) to 

0.9998 with the best correlation observed by using spectral information from a depth of 175 

μm below the tissue surface for discrimination [r = 0.9998, p<0.001, Fig. 5(b)]. 

 

Fig. 5. (a) Normalized power-law exponents of all four burn severities versus imaging depth. 

Error bars represent the standard deviation of the exponent. (b) Correlation between the 
average normalized power-law exponents measured at a depth of 175 μm and the depth of the 

injury (zburn) determined by histopathology. Error bars represent the estimated range of injury 

determined by the histopathologist. Note that the collagen structure in the FTB sample 
collapsed causing the tissue to flatten and resulting in a large uncertainty in the measured burn 

depth. 

4. Discussion and conclusions 

In this study, SOCT was used to analyze and classify burn injuries of varying severities in 

vivo in a mouse model. A depth-dependent analysis method was presented that enhanced 

classification accuracy and the spectroscopic data were correlated with burn depth as 

determined by histopathology. A strong negative correlation (r = 0.9998) was observed 

between the depth of the injury and a normalized power-law exponent suggesting that this 

approach could be used to assess burn depth. 

The main drawback of using near-infrared SOCT for burn injury assessment is the limited 

penetration depth, which is a few hundred microns in skin. Although this is sufficient to 

image a large portion of dermal mouse tissue [21], the penetration depth may preclude the use 

of SOCT in assessing the thicker epidermal and dermal layers found in human skin [22, 23]. 

Clinically, the classification and management of burns depends upon the extent of the injury 

in both of these layers. Although our results suggest that spectral analysis of superficial tissue 

could be used as a surrogate measure of the health of deeper dermal layers, new spectroscopic 

techniques with improved penetration depth [24, 25] could potentially be used in conjunction 

with the analysis methods presented here to directly assess burn depth in human patients. 
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